Let's start with :
#(3x^2+10x-5)/((x+1)^2(x-2))=A/(x+1)+B/(x+1)^2+C/(x-2)=#
#(A(x+1)(x-2)+B(x-2)+C(x+1)^2)/((x+1)^2(x-2))=#
#(A(x^2-x-2)+Bx-2B+C(x^2+2x+1))/((x+1)^2(x-2))=#
#(Ax^2-Ax-2A+Bx-2B+Cx^2+2Cx+C)/((x+1)^2(x-2))=#
#((A+C)x^2+(-A+B+2C)x+(-2A-2B+C))/((x+1)^2(x-2))#
So we know now :
#A+C=3#
#-A+B+2C=10#
#-2A-2B+C=-5#
From this system we get :
#A=0, B=4, C=3#
Let's get to the integral now:
#int(3x^2+10x-5)/((x+1)^2(x-2))dx=int(4/(x+1)^2+3/(x-2))dx=#
#int4/(x+1)^2dx+int3/(x-2)dx=#
#int4(x+1)^(-2)dx+3ln|x-2|=#
#-4(x+1)^(-1)+3ln|x-2|=#
#-4/(x+1)+3ln|x-2| +C#