Question #75006

2 Answers
Apr 5, 2017

The solution is S={135º,153.4º}

Explanation:

We need

sectheta=1/costheta

cos^2theta+sin^2theta=1

Dividing by cos^2theta

1+sin^2theta/cos^2theta=1/cos^2theta

1+tan^2theta=sec^2theta

The equation

2sec^2theta+3tantheta=1

becomes

2(1+tan^2theta)+3tantheta-1=0

2+2tan^2theta+3tantheta-1=0

2tan^2theta+3tantheta+1=0

We solve this like the quadratic equation

ax^2+bx+c=0

The discriminant is

Delta=b^2-4ac=9-(4*2*1)=9-8=1

As Delta>0, we have 2 real solutions

x=(-b+-sqrtDelta)/(2a)

tantheta=(-3+-sqrt1)/(2*2)

tantheta=-1

theta=3/4pi or theta=135º

and

tantheta=-0.5

theta=2.68 or theta=153.4º

Apr 6, 2017

135^@; 153^@43

Explanation:

Use trig identity:
sec^2 t= (1 + tan^2 t)
In this case:
(2 + 2tan^2 t) + 3tan t - 1 = 0
2tan^2 t + 3tan t + 1 = 0
Solve this quadratic equation for tan t.
Since a - b + c = 0, use shortcut.
The 2 real roots are : tan t = - 1 and tan t = -c/a = - 1/2
Use calculator and unit circle:
a. tan t = -1 --> t = (3pi)/4 and t = pi + (3pi)/4 = (7pi)/4
b. tan t = - 1/2 --> t = -26^@57, and
t = -26.57 + 180 = 153^@43
Answers for (0, pi):
(3pi)/4 (or 135^@); 153^@43