Question #f68d0

2 Answers
Mar 23, 2017

secxsinxtanx

Explanation:

Since cscx=1sinx and cotx=cosxsinx, substitute these in to get 1sinxsinxcosxsinx

Multiply the reciprocal of the denominator.

1sinxsinxsinxcosx

We end up with this after using the distributive property.

sinxsinxcosxsin2xcosx

Cancel out the two sinxs on the left.

1cosxsin2xcosx

Since 1cosx=secx and sinxcosx=tanx, the simplified answer is

secxsinxtanx

EDIT: Ignore this, not fully simplified. See Scott's answer.

Mar 23, 2017

cosx

Explanation:

First put everything in terms of sine and cosine

cscx=1sinx and cotx=cosxsinx, so cscxsinxcotx=1sinxsinxcosxsinx=(1sinxsinx)(sinxcosx)

Then distribute multiplication over subtraction

(1sinxsinx)(sinxcosx)=(1sinxsinxcosx)(sinxsinxcosx)

Multiply inside the parentheses

(1sinxsinxcosx)(sinxsinxcosx)=(sinxsinxcosx)(sinxsinxcosx)

And simplify

(sinxsinxcosx)(sinxsinxcosx)=1cosxsin2xcosx=1sin2xcosx

Using the Pythagorean identity sin2x+cos2x=1, we know that 1sin2x=cos2x, so substitute that in

1sin2xcosx=cos2xcosx

And finally, simplify

cos2xcosx=cosx1=cosx