Given
#color(white)("XXX")1/4x^2+4x-3=0#
This becomes easier if we multiply both sides by #4# to get rid of the fraction:
#color(white)("XXX")x^2+16x-12=0#
We can then solve this using the quadratic equation or by completing the square method.
Completing the square
#x^2+16x-12=0#
#color(white)("XXX")rarr x^2+16x=12#
Noting that if #x^2+16x# are the first 2 terms of a squared binomial, then the third term must be #(16/2)^2=8^2 (=64)#
#color(white)("XXX")rarr x^2+16x+8^2=12+64#
#color(white)("XXX")rarr (x+8)^2=76#
#color(white)("XXX")rarr x+8=+-sqrt(76)=+-2sqrt(19)#
#color(white)("XXX")rarr x=-8+-2sqrt(19)#
Quadratic formula
#ax^2+bx+c=0 rarr x=(-b+-sqrt(b^2+4ac))/(2a)#
In this case
#1x^2+16x-12=0 rarr x=(-16+-sqrt(16^2-4 * 1 * (-12)))/(2 * 1)#
#color(white)("XXXXXXXXXXXXXXX")=(-16+sqrt(304))/2#
#color(white)("XXXXXXXXXXXXXXX")=(-16+4sqrt(19))/2#
#color(white)("XXXXXXXXXXXXXXX")=-8+-2sqrt(19)#