How do you simplify (21!)/(17!4!)?

2 Answers
Oct 30, 2016

5985

Explanation:

(21!)/(17! xx 4!)=(17! xx 18 xx 19 xx 20 xx 21)/(17! xx4!)

may be simplified as

=(18 xx 19 xx 20 xx 21)/(1 xx 2 xx 3 xx 4)

and this may be further simplified as

=(9 xx 19 xx 5 xx 7)/(1 xx 1 xx 1 xx 1)

=9 xx19 xx 5 xx 7

=5985

Oct 30, 2016

Write out the definitions of each factorial and you should get 5985.


=> (1cdot2cdot3cdot4cdots17cdot18cdot19cdot20cdot21)/((1cdot2cdot3cdot4cdots15cdot16cdot17)(1cdot2cdot3cdot4))

The portion of 21! that is before 18cdot19cdot20cdot21 cancels out.

= (18cdot19cdot20cdot21)/(1cdot2cdot3cdot4)

= ((19-1)cdot19cdot20(20+1))/(24)

= ((361 - 19)cdot(400 + 20))/(24)

= (342cdot420)/(24)

= (171cdot420)/(12)

= (171cdot210)/(6)

= (57cdot210)/(2)

= 57cdot105

= 57cdot(100 + 5)

= 5700 + 57cdot10/2

= 5700 + 285

= color(blue)(5985)