How do you find the integral of cos2(2x)dx?

1 Answer
Aug 28, 2016

12(x+14sin(4x))+C

Explanation:

cos2(2x)dx

using the following identity,

cos2(x)=1+cos(2x)2

=1+cos(22x)2dx

taking the constant out,

af(x)dx=af(x)dx

so,=121+cos(22x)dx

applying the sum rule,

f(x)±g(x)dx=f(x)dx±g(x)dx

we have,1dx =x
and,
cos(22x)dx=14sin(4x)

finally,
=12(x+14sin(4x))

adding constant,we get,
12(x+14sin(4x))+C