How do you determine the limit of #sinh(2x)/e^(3x)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Eddie Aug 25, 2016 #= 0# Explanation: #lim_(x to oo) sinh(2x)/e^(3x)# #= lim_(x to oo) (e^(2x) - e^(-2x))/(2e^(3x))# #= lim_(x to oo) (e^(-x) - e^(-5x))/(2e^(0))# #= lim_(x to oo) (e^(-x) - e^(-5x))/(2)# #= (lim_(x to oo)e^(-x) - e^(-5x))/(2)# #= 0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 4934 views around the world You can reuse this answer Creative Commons License