What is the period of f(theta) = tan ( ( 15 theta)/7 )- sec ( ( 5 theta)/ 6 ) f(θ)=tan(15θ7)sec(5θ6)?

1 Answer

Period P=(84pi)/5=52.77875658P=84π5=52.77875658

Explanation:

The given f(theta)=tan((15theta)/7)-sec ((5theta)/6)f(θ)=tan(15θ7)sec(5θ6)

For tan ((15theta)/7)tan(15θ7), period P_t=pi/(15/7)=(7pi)/15Pt=π157=7π15

For sec ((5theta)/6)sec(5θ6), period P_s=(2pi)/(5/6)=(12pi)/5Ps=2π56=12π5

To get the period of f(theta)=tan((15theta)/7)-sec ((5theta)/6)f(θ)=tan(15θ7)sec(5θ6),
We need to obtain the LCM of the P_tPt and P_sPs

The solution

Let PP be the required period
Let kk be an integer such that P=k*P_tP=kPt
Let mm be an integer such that P=m*P_sP=mPs

P=PP=P
k*P_t=m*P_skPt=mPs
k*(7pi)/15=m*(12pi)/5k7π15=m12π5

Solving for k/mkm

k/m=(15(12)pi)/(5(7)pi)km=15(12)π5(7)π

k/m=36/7km=367

We use k=36k=36 and m=7m=7
so that
P=k*P_t=36*(7pi)/15=(84pi)/5P=kPt=367π15=84π5

also

P=m*P_s=7*(12pi)/5=(84pi)/5P=mPs=712π5=84π5

Period P=(84pi)/5=52.77875658P=84π5=52.77875658

Kindly see the graph and observe two points to verify for the period

![Desmos.com](useruploads.socratic.org)

God bless....I hope the explanation is useful