How do you differentiate f(x) = x^3/(xcotx+1) using the quotient rule?

1 Answer
Jun 21, 2016

frac{d}{dx}(frac{x^3}{xcot (x)+1})=frac{2x^3sin ^2(x)cot (x)+3x^2sin ^2(x)+x^4}{sin ^2(x)(xcot (x)+1)^2}

Explanation:

frac{d}{dx}(frac{x^3}{xcot (x)+1})

Applying quotient rule,

(frac{f}{g})^'=frac{f^'cdot g-g^'cdot f}{g^2}

=frac{frac{d}{dx}(x^3)(xcot (x)+1)-frac{d}{dx}(xcot (x)+1)x^3}{(xcot (x)+1)^2}

We know,
frac{d}{dx}(x^3)=3x^2
frac{d}{dx}cot (x)+1=-frac{x}{sin ^2(x)}+cot(x)

so,=frac{3x^2(xcot (x)+1)-(-frac{x}{sin ^2(x)}+cot (x))x^3}{(xcot (x)+1)^2}

Simplifying it,
frac{2x^3sin ^2(x)cot (x)+3x^2sin ^2(x)+x^4}{sin ^2(x)(xcot (x)+1)^2}