How do you differentiate f(x)= -1 / (2x-7 )f(x)=12x7 using the quotient rule?

1 Answer
Jun 8, 2016

frac{d}{dx}(-frac{1}{2x-7})=frac{2}{(2x-7)^2}ddx(12x7)=2(2x7)2

Explanation:

frac{d}{dx}(-frac{1}{2x-7})ddx(12x7)

Taking the constant out,

(acdot f)^'=acdot f^'

=-frac{d}{dx}(frac{1}{2x-7})

=-frac{d}{dx}((2x-7)^{-1})

Applying chain rule,

frac{df(u)}{dx}=frac{df}{du}cdot frac{du}{dx}

Let,2x-7=u

=-frac{d}{du}(u^{-1})frac{d}{dx}(2x-7)

WE know,

frac{d}{du}(u^{-1})=-frac{1}{u^2}

frac{d}{dx}(2x-7)=2

=-(-frac{1}{u^2})2

Substitute back =-(-frac{1}{u^2})
=-(-frac{1}{(2x-7)^2})2

=-(-frac{1}{(2x-7)^2})2

Simplify,
frac{2}{(2x-7)^2}