How do you differentiate given y = 2x (x^(1/2) - cot x)?

1 Answer
Jun 3, 2016

=frac{2x+3sqrt{x}sin ^2(x)-2sin ^2(x)cot (x)}{sin ^2(x)}

Explanation:

frac{d}{dx}(2x(sqrt{x}-cot (x)))

Taking the constant out,
(a\cdot f)^'=a\cdot f^'

=2frac{d}{dx}(x(sqrt{x}-cot (x)))

Applying the product rule,
(fcdot g)^'=f^'cdot g+fcdot g^'
f=x:g=sqrtx -cotx

=2(frac{d}{dx}(x)(sqrt{x}-cot(x))+frac{d}{dx}(sqrt{x}-cot (x))x)

We know,
frac{d}{dx}(x)=1

frac{d}{dx}(sqrt{x}-cot(x))=frac{1}{2sqrt{x}}+frac{1}{sin ^2(x)}

=2(1(sqrt{x}-\cot (x))+(frac{1}{2sqrt{x}}+frac{1}{sin ^2(x)})x)

Simplify,
=frac{2x+3sqrt{x}sin ^2(x)-2sin ^2(x)cot (x)}{sin ^2(x)}