What is the derivative of #tan(xy)#?

1 Answer
May 30, 2016

#frac{d}{dx}(tan (xy))=\sec ^2(xy)y#

Explanation:

#frac{d}{dx}(tan (xy))#

Applying Chain rule,
#\frac{df(u)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}#

Let #xy=u#

#=\frac{d}{du}(\tan (u))\frac{d}{dx}(xy)#

We know,
#\frac{d}{du}(\tan (u))=\sec ^2(u)# and,
#\frac{d}{dx}(xy)=y#

So,
#=\sec ^2(u)y#

Finally,substituting back,#xy=u#
#=\sec ^2(xy)y#