What is the derivative of y =x^2-5x+10y=x25x+10?

1 Answer
May 26, 2016

d/dx (x^2−5x+10)=2x-5ddx(x25x+10)=2x5

Explanation:

The power rule gives the derivative of an expression of the form x^nxn .

d/dx x^n=n*x^{n-1}ddxxn=nxn1

We will also need the linearity of the derivative

d/dx (a*f(x)+b*g(x))=a*d/dx(f(x))+b*d/dx (g(x)) ddx(af(x)+bg(x))=addx(f(x))+bddx(g(x))

and that the derivative of a constant is zero.

We have

f(x)=x^2−5x+10f(x)=x25x+10

d/dxf(x)=d/dx (x^2−5x+10)=d/dx (x^2)−5d/dx(x)+d/dx(10)ddxf(x)=ddx(x25x+10)=ddx(x2)5ddx(x)+ddx(10)

=2*x^1-5*1*x^0+0=2x-5=2x151x0+0=2x5