What is the vertex of y= -3x^2-x-2(3x+5)^2y=3x2x2(3x+5)2?

1 Answer
May 13, 2016

The vertex is at (- 61/42, - 10059/1764)(6142,100591764) or (-1.45,-5.70)(1.45,5.70)

Explanation:

You can find the vertex from ANY of the three forms of a parabola: Standard, factored and vertex. Since it is simpler I'm going to converted this into standard form.

y= -3x^2-x-2(3x+5)^2y=3x2x2(3x+5)2

y= -3x^2-x-2*(9x^2+2*5*3*x+25) y=3x2x2(9x2+253x+25)
y= -3x^2-x-18x^2-60x-50 y=3x2x18x260x50
y= -21x^2-61x-50 y=21x261x50

x_{vertex} = {-b}/{2a}=61 /{2*(-21)}=- 61/42~= -1.45 xvertex=b2a=612(21)=61421.45

(you can prove this by either completing the square in general or averaging the roots found from the quadratic equation)

and then substituted it back into the expression to find y_{vertex}yvertex

y_{vertex}= -21*(-61/42)^2-61*(-61/42)-50 yvertex=21(6142)261(6142)50

y_{vertex}={-21*61*61}/{42*42}+{61*61*42}/{42*42} - {50*42*42}/{42*42}yvertex=2161614242+61614242425042424242

y_{vertex}={ -21*61*61+61*61*42 - 50*42*42}/{42*42}yvertex=216161+6161425042424242

y_{vertex}=-10059/1764~=-5.70yvertex=1005917645.70

The vertex is at (- 61/42, - 10059/1764)(6142,100591764) or (-1.45,-5.70)(1.45,5.70)