How do you simplify sqrt(108x^5y^8)/sqrt(6xy^5)108x5y86xy5?

2 Answers
May 11, 2016

3x^2sqrt(2y^3)3x22y3

Explanation:

sqrt(108x^5y^8)/sqrt(6xy^5)=sqrt((108x^5y^8)/(6xy^5))108x5y86xy5=108x5y86xy5
=sqrt((108/6)(x^5/x)(y^8/y^5)=(1086)(x5x)(y8y5)
=sqrt((18)(x^(5-1))(y^(8-5))=(18)(x51)(y85)
=sqrt((18)(x^4)(y^3)=(18)(x4)(y3)
=3x^2sqrt(2y^3)=3x22y3

May 11, 2016

3x^2ysqrt(2y)3x2y2y

Explanation:

Each square root can be calculated separately, or because it is a division, it can be combined into a single square root.

sqrt(108x^5y^8)/sqrt(6xy^5)108x5y86xy5 = sqrt(18x^4y^3) = sqrt(9 xx 2x^4y^2 y )18x4y3=9×2x4y2y

= 3x^2ysqrt(2y)3x2y2y