How do you find the limit of (sin(x)/3x) as x approaches 0 using l'hospital's rule? Calculus Limits Determining Limits Algebraically 1 Answer Shura Mar 2, 2016 lim_(x->0)(sin(x)/(3x)) = 1/3. See explanation below. Explanation: lim_(x->0)(sin(x)/(3x)) = "0/0" so we can use Bernouilli L'Hôpital's rule. lim_(x->0)(sin(x)/(3x)) = lim_(x->0)((sin(x)')/((3x)')) =lim_(x->0) cos(x)/3 = 1/3. Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 7762 views around the world You can reuse this answer Creative Commons License