What is the derivative of y=1/2(x^2-x^-2)y=12(x2x2)?

1 Answer
Feb 29, 2016

\frac{d}{dx}(\frac{1}{2}(x^2-x^{-2}))ddx(12(x2x2)) = x+\frac{1}{x^3}x+1x3

Explanation:

\frac{d}{dx}(\frac{1}{2}(x^2-x^{-2}))ddx(12(x2x2))

Taking the constant out as: (a\cdot f)^'=a\cdot f^'

=\frac{1}{2}\frac{d}{dx}(x^2-x^{-2})

Applying sum/difference rule s: (f\pm g)^'=f^'\pm g^'

=\frac{1}{2}(\frac{d}{dx}(x^2)-\frac{d}{dx}(x^{-2}))

We have,
d/dx (x^2) = 2x

d/dx((x^(-2)) = -2x^(-3) =-2/x^3

Finally,
=\frac{1}{2}(2x-(-\frac{2}{x^3}))

Simplifying it,we get,

x+\frac{1}{x^3}