How do you solve cos 2x(2cosx+1) = 0 in the interval 0 to 2pi?

1 Answer
Feb 29, 2016

\cos (2x)(2\cos (x)+1)=0,0\le \x\le \2\pi =

x=\frac{2\pi } {3},x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{4\pi }{3},x=\frac{7\pi }{4}

Explanation:

Solving each part separately,
\cos (2x)=0 or 2\cos (x)+1=0

Now,
\cos(2x)=0, 0\le x\le 2\pi

General solutions for cos(2x)=0,
cos(2x)=0 : 2x=pi/2 +2pin , 2x=(3pi)/2+2pin

Solving we get,
2x=\frac{\pi }{2}+2\pi n :x=\frac{4\pi n+\pi }{4}

2x=\frac{3\pi }{2}+2\pi n :x=\frac{4\pi n+3\pi }{4}

x=\frac{4\pi n+\pi }{4},x=\frac{4\pi n+3\pi }{4}

So,solution for the range 0\le x\le 2\pi

x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{7\pi }{4}

Again,we have,
2\cos(x)+1=0,0\le x\le 2\pi

Isolating cos(x)
cos(x) = -1/2

General solutions for cos(x) = -1/2#

\cos(x)=-\frac{1}{2}:\quad x=\frac{2\pi }{3}+2\pi n,quad x=\frac{4\pi }{3}+2\pi n

Solutions for the range 0\le x\le 2\pi
x=\frac{2\pi }{3},x=\frac{4\pi }{3}

Finally combining all the solutions,

x=\frac{2\pi }{3},x=\frac{\pi }{4},x=\frac{3\pi }{4},x=\frac{5\pi }{4},x=\frac{4\pi }{3},x=\frac{7\pi }{4}