How do you find the zeros, real and imaginary, of y=8x^2-4x-11 using the quadratic formula?

1 Answer
Feb 19, 2016

x = (1+-sqrt(23))/4

Explanation:

For ax^2+bx+c=0:

x=(-b+-sqrt(b^2-4ac))/(2a)

Therefore a=8, b=-4, c=-11 and:

x = (4+-sqrt((-4)^2-4*8*-11))/(2*8)
x = (4+-sqrt(16+352))/16
x = (4+-sqrt(368))/16
x = (4+-4sqrt(23))/16
x = (1+-sqrt(23))/4