Question #302c7

1 Answer
Jan 3, 2016

10e^sqrtx -3/2ln^2(cos(x/3))+C

Explanation:

For simplicity, let:

I_1=int ((5e^sqrtx)/sqrtx)dx

and I_2=int(ln(cos(x/3))/cot(x/3))dx

I=I_1+I_2


I_1=int((5e^sqrtx)/sqrtx)dx

Let t=sqrtx
then dt=1/(2sqrtx)dx

dx=(2t) dt

I_1=int(5e^t/cancelt*2cancelt) dt

I_1=10int(e^t)

I_1=10e^t + c_1=10e^sqrtx + c_1


I_2=int(ln(cos(x/3))/cot(x/3))dx

Let u=cos(x/3)

then du=-sin(x/3)/3dx

dx=-3/sin(x/3)du

I_2=-3int(lnu/u)du

I_2=-3ln^2u/2 + c_2=-3ln^2cos(x/3)/2 + c_2


I=I_1+I_2

I=10e^sqrtx -3ln^2cos(x/3)/2 + (c_1+c_2)

I=10e^sqrtx -3ln^2cos(x/3)/2 + C where C=c_1+c_2