For simplicity, let:
I_1=int ((5e^sqrtx)/sqrtx)dx
and I_2=int(ln(cos(x/3))/cot(x/3))dx
I=I_1+I_2
I_1=int((5e^sqrtx)/sqrtx)dx
Let t=sqrtx
then dt=1/(2sqrtx)dx
dx=(2t) dt
I_1=int(5e^t/cancelt*2cancelt) dt
I_1=10int(e^t)
I_1=10e^t + c_1=10e^sqrtx + c_1
I_2=int(ln(cos(x/3))/cot(x/3))dx
Let u=cos(x/3)
then du=-sin(x/3)/3dx
dx=-3/sin(x/3)du
I_2=-3int(lnu/u)du
I_2=-3ln^2u/2 + c_2=-3ln^2cos(x/3)/2 + c_2
I=I_1+I_2
I=10e^sqrtx -3ln^2cos(x/3)/2 + (c_1+c_2)
I=10e^sqrtx -3ln^2cos(x/3)/2 + C where C=c_1+c_2