How do you solve 3tan^2x = 13tan2x=1?

1 Answer
Nov 14, 2015

xx = 30^o30o , 150^o150o , 210^02100 , 330^03300

Explanation:

The given quadratic equation = 3tan^23tan2 = 11

tan^2xtan2x = 1/313

Finding square root on both sides

tanxtanx = +-± 1/sqrt313

Taking +ve value

tanxtanx = 1/sqrt313

tanxtanx = tan30^0tan300

xx = 30^0300

since x is positive, x is positive in first or third quadrant

So, xx = 30^0300 or 180^01800 + 30^0300
= 30^0300 or 210^02100

Again taking -ve value

tanxtanx = -1/sqrt313

Since tan will have negative value in second and fourth quadrant

xx = 180-3018030 or 360-3036030

xx =150^o150o or 330^o330o

Hence xx = 30^o30o , 150^o150o , 210^02100 , 330^03300