How do you simplify #(12xy^4)/(8x^2y^3)#? Algebra Exponents and Exponential Functions Exponential Properties Involving Quotients 1 Answer Grégory V. Jul 6, 2015 #(3y)/(2x)# with #(x!=0, y!=0)# Explanation: #(12xy^4)/(8x^2y^3)# Note : #(x!=0, y!=0)# Decompose the expression : #(12xy^4)/(8x^2y^3) = (2*2*3*x*y*y*y*y)/(2*2*2*x*x*y*y*y)# And cancels pairs : #(color(green)(cancel(2)*cancel(2)*3)*color(blue)(cancel(x))*color(red)(cancel(y)*cancel(y)*cancel(y)*y))/(color(green)(cancel(2)*cancel(2)*2)*color(blue)(cancel(x)*x)*color(red)(cancel(y)*cancel(y)*cancel(y))) = (3y)/(2x)# Then : #(12xy^4)/(8x^2y^3) = (3y)/(2x)# with #(x!=0, y!=0)# Answer link Related questions What is the quotient of powers property? How do you simplify expressions using the quotient rule? What is the power of a quotient property? How do you evaluate the expression #(2^2/3^3)^3#? How do you simplify the expression #\frac{a^5b^4}{a^3b^2}#? How do you simplify #((a^3b^4)/(a^2b))^3# using the exponential properties? How do you simplify #\frac{(3ab)^2(4a^3b^4)^3}{(6a^2b)^4}#? Which exponential property do you use first to simplify #\frac{(2a^2bc^2)(6abc^3)}{4ab^2c}#? How do you simplify #(x^5y^8)/(x^4y^2)#? How do you simplify #[(2^3 *-3^2) / (2^4 * 3^-2)]^2#? See all questions in Exponential Properties Involving Quotients Impact of this question 2266 views around the world You can reuse this answer Creative Commons License