How do you solve the limit as h approaches 0 of [34/(35+h) - (34/35)]/h?

2 Answers
Jun 26, 2015

lim_(x->0)[34/(35+x) - 34/35]/x =-34/1225 ~~ -0.028.

Explanation:

lim_(x->0)f(x)/g(x)= lim_(x->0)[34/(35+x) - 34/35]/x = ''(0/0)'', which is undefined.

We have f(x) = 34/(35+x) - 34/35 and g(x) = x.

Since lim_(x->0)f(x)=lim_(x->0)g(x)=0, we can use L'Hospital's Rule :

lim_(x->0)f(x)/g(x)=lim_(x->0)(f'(x))/(g'(x)) =lim_(x->0)([34/(35+x) - 34/35]')/((x)')

=lim_(x->0)((34/(35+x))')/((x)')

=lim_(x->0)((-34)/(35+x)^2)/1 = lim_(x->0)(-34)/(35+x)^2 = -34/35^2 = -34/1225 ~~ -0.028.

Jun 26, 2015

Rewrite (simplify) the expression.

Explanation:

Start by writing the numerator as a single ratio:

34/(35+h) - 34/35 = ((34)(35)-(34)(35+h))/((35+h)(35))

=(-34h)/(35(35+h))

So the big ratio becomes:

(34/(35+h) - 34/35)/h = (((34)(35)-(34)(35+h))/((35+h)(35)))/(h/1)

=(-34h)/(35(35+h))*1/h

= (-34)/(35(35+h))

For the limit, we get:

lim_(hrarr0)(34/(35+h) - 34/35)/h = lim_(hrarr0)(-34)/(35(35+h)) = (-34)/35^2