Question #2fb5f

1 Answer
May 15, 2015

Apply the Sum and Difference Formulas for Sine and Cosine functions:

sin(x+y) = sin(x)cos(y)+cos(x)sin(y)sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
sin(x-y) = sin(x)cos(y)-cos(x)sin(y)sin(xy)=sin(x)cos(y)cos(x)sin(y)
cos(x+y) =cos(x)cos(y) -sin(x)sin(y)cos(x+y)=cos(x)cos(y)sin(x)sin(y)
cos(x-y) =cos(x)cos(y) +sin(x)sin(y)cos(xy)=cos(x)cos(y)+sin(x)sin(y)

We'll attempt to evaluate the numerator and denominator separately to avoid excessively large expressions:

Numerator:
color(red)(sin(x+y))+color(blue)(sin(x-y))sin(x+y)+sin(xy)

=color(red)(sin(x)cos(y)+cos(x)sin(y))+color(blue)(sin(x)cos(y)-cos(x)sin(y))=sin(x)cos(y)+cos(x)sin(y)+sin(x)cos(y)cos(x)sin(y)

= 2sin(x)cos(y)=2sin(x)cos(y)

Denominator:
color(red)(cos(x+y))+color(blue)(cos(x-y))cos(x+y)+cos(xy)

=color(red)(cos(x)cos(y) -sin(x)sin(y)) +color(blue)(cos(x)cos(y) +sin(x)sin(y))=cos(x)cos(y)sin(x)sin(y)+cos(x)cos(y)+sin(x)sin(y)

=2cos(x)cos(y)=2cos(x)cos(y)

Left-side of Equation
= "Numerator"/"Denominator"=NumeratorDenominator

(cancel(2)sin(x)cancel(cos(y)))/(cancel(2)cos(x)cancel(cos(y)))

=tan(x)