f(x) = sin^2 x + sin x - 2 = 0.f(x)=sin2x+sinx−2=0. Call sin x = tsinx=t, we get:
f(t) = t^2 + t - 2 = 0f(t)=t2+t−2=0. This is a quadratic equation with a + b + c = 0a+b+c=0. One real root is (11) and the other is (c/a) = -2(ca)=−2 (rejected since > 1>1).
Next, solve t = sin x = 1 --> x = pi/2t=sinx=1−→x=π2
Answer within period (0, 2pi0,2π): x = pi/2x=π2
Extended answers: x = pi/2 + k*2pi.x=π2+k⋅2π.
Check:
x = pi/2 --> sin x + 1--> f(x) = 1 + 1 - 2 = 0x=π2−→sinx+1−→f(x)=1+1−2=0. Correct.