How do you solve sin^2(x) + sinx - 2 = 0sin2(x)+sinx2=0?

1 Answer
Apr 15, 2015

f(x) = sin^2 x + sin x - 2 = 0.f(x)=sin2x+sinx2=0. Call sin x = tsinx=t, we get:
f(t) = t^2 + t - 2 = 0f(t)=t2+t2=0. This is a quadratic equation with a + b + c = 0a+b+c=0. One real root is (11) and the other is (c/a) = -2(ca)=2 (rejected since > 1>1).
Next, solve t = sin x = 1 --> x = pi/2t=sinx=1x=π2
Answer within period (0, 2pi0,2π): x = pi/2x=π2
Extended answers: x = pi/2 + k*2pi.x=π2+k2π.
Check:
x = pi/2 --> sin x + 1--> f(x) = 1 + 1 - 2 = 0x=π2sinx+1f(x)=1+12=0. Correct.