X=a(cosθ+cos2θ),y=b(sinθ+sin2θ) Remove θ By applying Elimination Methods ??

1 Answer
Jun 1, 2018

Given

x=a(cosθ+cos2θ)....(1)

y=b(sinθ+sin2θ).....(2)

From (1) and (2) we get

x^2/a^2+y^2/b^2=(sintheta+sin2theta)^2+(costheta+cos2theta)^2

=>x^2/a^2+y^2/b^2=(sin^2theta+cos^2theta)+(sin^2 2theta+cos^2 2theta)+2(cos2thetacostheta+sin2thetasintheta)
=>x^2/a^2+y^2/b^2=1+1+2cos(2theta-theta)

=>x^2/a^2+y^2/b^2=2(1+costheta)....(3)

Now by (1) we have

x=a(cosθ+cos2θ)

=>x/a=2cos^2θ+costheta-1

=>x/a=2cos^2θ+2costheta-costheta-1

=>x/a=2cosθ(costheta+1)-(costheta+1)

=>x/a=(2cosθ-1)(costheta+1).....(4)

Combining (3) and (4) we get

=>x/a=(x^2/a^2+y^2/b^2-2-1)*1/2(x^2/a^2+y^2/b^2)

=>2x/a=(x^2/a^2+y^2/b^2-3)(x^2/a^2+y^2/b^2)

=>(x^2/a^2+y^2/b^2-3)(x^2/a^2+y^2/b^2)=(2x)/a