color(blue)(((x^-2)(27x^0))^(1/3)((x−2)(27x0))13 "when"when color(brown)(x=8x=8
To, solve this, we need to know some exponential rules
color(brown)(rArrx^0=1⇒x0=1
color(brown)(rArrx^-z=1/(x^z)⇒x−z=1xz
color(brown)(rArrx^(1/y)=root(y)(x)⇒x1y=y√x
Now, insert 88 into the problem
rarr((8^-2)(27*8^0))^(1/3)→((8−2)(27⋅80))13
Now, apply color(brown)(x^0=1x0=1
rarrrarr((8^-2)(27))^(1/3)→→((8−2)(27))13
Apply color(brown)(x^-z=1/x^zx−z=1xz
rarr((1/8^2)(27))^(1/3)→((182)(27))13
rarr((1/64)(27))^(1/3)→((164)(27))13
rarr(27/64)^(1/3)→(2764)13
Apply color(brown)(x^(1/y)=root(y)(x)x1y=y√x
rarrroot(3)(27/64)→3√2764
rarrroot(3)((3xx3xx3)/(4xx4xx4))→3√3×3×34×4×4
color(green)(rArr3/4⇒34
Hope that helps!!! ☻