What will be the solution of the mentioned problem??

int(sin^(-1)sqrt(x/(a+x)))dx=?

1 Answer
Mar 13, 2018

int sin^(-1)(sqrt(x/(a+x)))dx = xsin^(-1)(sqrt(x/(a+x)))- sqrtasqrtx +a arctan(sqrt(x/a))+C

Explanation:

Integrate by parts, using dx as differential factor. As:

d/dx sin^(-1)x = 1/sqrt(1-x^2)

we will end up with an algebraic function:

int sin^(-1)(sqrt(x/(a+x)))dx = xsin^(-1)(sqrt(x/(a+x)))- int x d(sin^(-1)(sqrt(x/(a+x))))

Let's calculate the derivative separately because its a bit cumbersome:

d/dx sin^(-1)(sqrt(x/(a+x))) = 1/sqrt(1-x/(x+a)) d/dx sqrt(x/(a+x))

d/dx sin^(-1)(sqrt(x/(a+x))) = 1/sqrt((x+a-x)/(x+a)) 1/(2sqrt(x/(a+x)))d/dx (x/(a+x))

d/dx sin^(-1)(sqrt(x/(a+x))) = sqrt(x+a)/sqrta 1/(2sqrt(x/(a+x)))(x+a-x)/(x+a)^2

d/dx sin^(-1)(sqrt(x/(a+x))) = (x+a)/(2sqrtasqrtx) a/(x+a)^2

d/dx sin^(-1)(sqrt(x/(a+x))) = sqrta/(2 sqrtx (x+a))

Then:

int sin^(-1)(sqrt(x/(a+x)))dx = xsin^(-1)(sqrt(x/(a+x)))- int x sqrta/(2 sqrtx (x+a))dx

int sin^(-1)(sqrt(x/(a+x)))dx = xsin^(-1)(sqrt(x/(a+x)))- sqrta/2 int sqrtx / (x+a)dx

Solve now the resulting integral by substituting:

sqrtx = t, x = t^2, dx = 2tdt:

int sqrtx / (x+a)dx = 2 int t^2/(a+t^2)dt

int sqrtx / (x+a)dx = 2 int (a + t^2-a)/(a+t^2)dt

int sqrtx / (x+a)dx = 2 int (1-a/(a+t^2))dt

using the linearity of the integral:

int sqrtx / (x+a)dx = 2 intdt -2 a int 1/(a+t^2)dt

int sqrtx / (x+a)dx = 2 t -2 sqrta int 1/(1+(t/sqrta)^2)d(t/sqrta)

int sqrtx / (x+a)dx = 2 t -2 sqrta arctan(t/sqrta)+C

and undoing the substitution:

int sqrtx / (x+a)dx = 2 sqrtx -2 sqrta arctan(sqrt(x/a))+C

Putting the partial solutions together:

int sin^(-1)(sqrt(x/(a+x)))dx = xsin^(-1)(sqrt(x/(a+x)))- sqrtasqrtx +a arctan(sqrt(x/a))+C