What will be the solution of the mentioned problem?

d/(dx)(tan^(-1)(cosx/(1+sinx)))=?ddx(tan1(cosx1+sinx))=?

1 Answer
Dec 6, 2017

d/(dx)tan^(-1)(cosx/(1+sinx))=-1/2ddxtan1(cosx1+sinx)=12

Explanation:

We use chain rule here. Let g(x)=cosx/(1+sinx)g(x)=cosx1+sinx and f(x)=tan^(-1)xf(x)=tan1x

then we can write h(x)=tan^(-1)(cosx/(1+sinx))h(x)=tan1(cosx1+sinx)

as h(x)=f(g(x))h(x)=f(g(x))

and d/(dx)tan^(-1)(cosx/(1+sinx))ddxtan1(cosx1+sinx)

= d/(dx)f(g(x))ddxf(g(x))

= (df)/(dg)xx(dg)/(dx)dfdg×dgdx

Now as f(x)=tan^(-1)xf(x)=tan1x, (df)/(dx)=1/(1+x^2)dfdx=11+x2

and as g(x)=cosx/(1+sinx)g(x)=cosx1+sinx, using quotient rule

(dg)/(dx)=(-sinx(1+sinx)-cosx*cosx)/(1+sinx)^2dgdx=sinx(1+sinx)cosxcosx(1+sinx)2

= (-sinx-sin^2x-cos^2x)/(1+sinx)^2=-1/(1+sinx)sinxsin2xcos2x(1+sinx)2=11+sinx

Hence d/(dx)tan^(-1)(cosx/(1+sinx))ddxtan1(cosx1+sinx)

= 1/(1+(g(x))^2)xx(-1/(1+sinx))11+(g(x))2×(11+sinx)

= -1/(1+(cosx/(1+sinx))^2)xx1/(1+sinx)11+(cosx1+sinx)2×11+sinx

= -(1+sinx)/((1+sinx)^2+cos^2x)1+sinx(1+sinx)2+cos2x

= -(1+sinx)/(1+sin^2x+2sinx+cos^2x)1+sinx1+sin2x+2sinx+cos2x

= -1/212

Note: In case you are wondering why it turns out to be so simple answer, see the following.

cosx/(1+sinx)=(cos^2(x/2)-sin^2(x/2))/(cos(x/2)+sin(x/2))^2cosx1+sinx=cos2(x2)sin2(x2)(cos(x2)+sin(x2))2

= (cos(x/2)-sin(x/2))/(cos(x/2)+sin(x/2))cos(x2)sin(x2)cos(x2)+sin(x2)

= (1-tan(x/2))/(1+tan(x/2))=(tan(pi/4)-tan(x/2))/(1+tan(pi/4)tan(x/2))=tan(pi/4-x/2)1tan(x2)1+tan(x2)=tan(π4)tan(x2)1+tan(π4)tan(x2)=tan(π4x2)

hence tan^(-1)(cosx/(1+sinx))=pi/4-x/2tan1(cosx1+sinx)=π4x2 and its derivative is -1/212