What torque would have to be applied to a rod with a length of 6 m and a mass of 3 kg to change its horizontal spin by a frequency 6 Hz over 5 s?

1 Answer
Jun 11, 2017

The torque for the rod rotating about the center is =67.86Nm
The torque for the rod rotating about one end is =271.43Nm

Explanation:

The torque is the rate of change of angular momentum

tau=(dL)/dt=(d(Iomega))/dt=I(domega)/dt

The moment of inertia of a rod, rotating about the center is

I=1/12*mL^2

=1/12*3*6^2= 9 kgm^2

The rate of change of angular velocity is

(domega)/dt=(6)/5*2pi

=(12/5pi) rads^(-2)

So the torque is tau=9*(12/5pi) Nm=108/5piNm=67.86Nm

The moment of inertia of a rod, rotating about one end is

I=1/3*mL^2

=1/3*3*6^2=36kgm^2

So,

The torque is tau=36*(12/5pi)=432/5pi=271.43Nm