What torque would have to be applied to a rod with a length of 6 m and a mass of 3 kg to change its horizontal spin by a frequency 15 Hz over 6 s?

1 Answer
Apr 14, 2017

The torque, for the rod rotating about the center, is =141.4Nm
The torque, for the rod rotating about one end, is =565.5Nm

Explanation:

The torque is the rate of change of angular momentum

tau=(dL)/dt=(d(Iomega))/dt=I(domega)/dt

The moment of inertia of a rod, rotating about the center is

I=1/12*mL^2

=1/12*3*6^2= 9 kgm^2

The rate of change of angular velocity is

(domega)/dt=(15)/6*2pi

=(5pi) rads^(-2)

So the torque is tau=9*(5pi) Nm=45piNm=141.4Nm

The moment of inertia of a rod, rotating about one end is

I=1/3*mL^2

=1/3*3*6^2=36

So,

The torque is tau=36*(5pi)=180pi=565.5Nm