What's the derivative of arctanx^(1/2)-2x^(1/2)arctanx122x12?

1 Answer
Aug 29, 2017

d/dx(arctansqrtx-2sqrtx) = -(2x+1)/(2(x+1)sqrtx) ddx(arctanx2x)=2x+12(x+1)x

Explanation:

d/dx arctanf(x) = (f'(x))/([f(x)]^2+1)

therefore d/dxarctansqrtx = (1/(2sqrtx))/(1+x) = 1/(2(x+1)sqrtx)

d/dx-2sqrtx = -2d/dx2sqrtx = -2* 1/(2sqrtx) = -1/sqrtx

therefore d/dx(arctansqrtx - 2sqrtx) = 1/(2(x+1)sqrtx)-1/sqrtx = 1/(2(x+1)sqrtx) -(2(x+1))/(2(x+1)sqrtx) = (1-2(x+1))/(2(x+1)sqrtx) = -(2x+1)/(2(x+1)sqrtx)