What is x if 3ln2+ln(x2)+2=4?

2 Answers
Nov 8, 2015

x=e132ln(2)

Explanation:

Isolate the term involving x:

ln(x2)=423ln(2)=23ln(2)

Use the property of logarithm ln(ab)=bln(a):

2ln(x)=23ln(2)

Isolate the term involving x again:

ln(x)=132ln(2)

Take the exponential of both terms:

eln(x)=e132ln(2)

Consider the fact that exponential and logarithm are inverse functions, and thus eln(x)=x

x=e132ln(2)

Nov 8, 2015

x=±e24

Explanation:

[1] 3ln2+ln(x2)+2=4

Subtract 2 from both sides.

[2] 3ln2+ln(x2)+22=42

[3] 3ln2+ln(x2)=2

Property: alogbm=logbma

[4] ln23+ln(x2)=2

[5] ln8+ln(x2)=2

Property: logbm+logbn=logb(mn)

[6] ln(8x2)=2

[7] loge(8x2)=2

Convert to exponential form.

[8] e2=8x2

Divide both sides by 8.

[9] e28=x2

Subtract e28 from both sides.

[10] x2e28=0

Difference of two squares.

[11] (x+e28)(xe28)=0

[12] (x+e22)(xe22)=0

Rationalize.

[13] (x+e24)(xe24)=0

Therefore: x=±e24