What is the vector representation, parametric equations and rectangular equations for the line through the points P(3,2,1) and Q(-1,2,4)?
1 Answer
# vecr=<<3,2,1>> + lambda <<-4,0,3>># , or,# vecr=((3),(2),(1)) + lamda ((-4),(0),(3)) #
Parametric Equation:
#{: (x=3-4lamda), (y=2), (z=1+3lamda) :} #
Cartessia Equation:
# (3-x)/4 = (z-1)/3 " "; y=2 #
Explanation:
We have:
# vec(OP)=<<3,2,1>> #
# vec(OQ)=<<-1,2,4>> #
So a line passing through
# vec(PQ) = vec(OQ) - vec(OP) #
# " "= <<-1-3,2-2,4-1>> #
# " "= <<-4,0,3>> #
The vector equation of a straight line (using
# \ \ \ \ \ vecr=veca + lambda vecd#
# :. vecr=<<3,2,1>> + lambda <<-4,0,3>>#
Or, in column notation
# vecr=((3),(2),(1)) + lamda ((-4),(0),(3)) #
For parametric equations we jus extract the
# {: (x=3-4lamda), (y=2+0lamda), (z=1+3lamda) :} => {: (x=3-4lamda), (y=2), (z=1+4lamda) :} #
For Cartesian equations we use the parameters form and eliminate the parameter:
# {: (x=3-4lamda), (y=2), (z=1+4lamda) :} => {: (lamda=(3-x)/4), (y=2), (lamda=(1-z)/3) :} #