The PDF for the standard normal is: mathbb P(z) = 1/sqrt(2 pi) e^(- z^2/2)
It has mean value:
mu = int_(-oo)^(oo) dz \ z \ mathbb P(z) = 1/sqrt(2 pi) int_(-oo)^(oo) \ dz \ z e^(- z^2/2)
=1/sqrt(2 pi) int_(-oo)^(oo) \ d( - e^(- z^2/2))
=1/sqrt(2 pi) [ e^(- z^2/2) ]_(oo)^(-oo) = 0
It follows that:
Var(z) = int_(-oo)^(oo) dz \ (z - mu)^2 mathbb P(z)
= 1/sqrt(2 pi) int_(-oo)^(oo) \ dz \ z^2 e^(- z^2/2)
This time, use IBP:
Var(z) = - 1/sqrt(2 pi) int_(-oo)^(oo) \ d( e^(- z^2/2)) \ z
= - 1/sqrt(2 pi) ( [ z e^(- z^2/2) ]_(-oo)^(oo) - int_(-oo)^(oo) dz \ e^(- z^2/2) )
= - 1/sqrt(2 pi) ( [ z e^(- z^2/2) ]_(-oo)^(oo) - int_(-oo)^(oo) dz \ e^(- z^2/2) )
Because [ z e^(- z^2/2) ]_(-oo)^(oo) = 0
= 1/sqrt(2 pi) int_(-oo)^(oo) dz \ e^(- z^2/2)
This integral is well known. It can be done using a polar sub, but here the result is stated.
Var(z) = 1/sqrt(2 pi) sqrt(2 pi) = 1