What is the unit circle value of tan 120, 135, and 150 degrees?

2 Answers
Mar 13, 2017

tan 120^@ = -sqrt(3)tan120=3
tan 135^@ = -1tan135=1
tan 150^@ = -sqrt(3)/3tan150=33

Explanation:

Use tan theta = sin(theta)/cos(theta)tanθ=sin(θ)cos(θ)

From a trig circle or a 30^@-60^@-90^@306090 triangle in the second quadrant:
tan 120^@ = (sqrt(3)/2)/(-1/2) = sqrt(3)/2 *-2/1 = -sqrt(3)tan120=3212=3221=3

From a trig circle or a 45^@-45^@-90^@454590 triangle in the second quadrant:
tan 135^@ = (sqrt(2)/2)/(-sqrt(2)/2) = sqrt(2)/2 * -2/sqrt(2) = -1tan135=2222=2222=1

From a trig circle or a 30^@-60^@-90^@306090 triangle in the second quadrant:
tan 150^@ = (1/2)/(-sqrt(3)/2) = 1/2 * -2/sqrt(3) = -1/sqrt(3) = -1/sqrt(3) * sqrt(3)/sqrt(3) = -sqrt(3)/3tan150=1232=1223=13=1333=33

Mar 14, 2017

color(blue)(rArrtan(120^circ)=-sqrt(3)tan(120)=3

color(orange)(rArrtan(135^circ)=-1tan(135)=1

color(purple)(rArrtan(150^circ)=-(sqrt(3))/3tan(150)=33

Explanation:

Let's use the unit circle to find the values

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)(tan(120^circ)tan(120)
enter image source here

We have the values of sin(120^circ) and cos(120^circ)sin(120)andcos(120)

So, use the identity

color(brown)(tan(theta)=( sin(theta))/(cos(theta))tan(θ)=sin(θ)cos(θ)

rarrtan(120^circ)=(sin(120^circ))/(cos(120^circ))tan(120)=sin(120)cos(120)

rarrtan(120^circ)=(sqrt(3)/2)/(-1/2)tan(120)=3212

rarrtan(120^circ)=sqrt(3)/2*-2/1tan(120)=3221

rarrtan(120^circ)=-cancel2sqrt(3)/cancel2

color(blue)(rArrtan(120^circ)=-sqrt(3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(orange)(tan(135^circ)

enter image source here

color(brown)(tan(theta)=( sin(theta))/(cos(theta))

rarrtan(135^circ)=(sin(135^circ))/(cos(135^circ))

rarrtan(135^circ)=(sqrt(2)/2)/(-sqrt(2)/2)

rarrtan(135^circ)=2/sqrt2*-2/sqrt(2)

rarrtan(135^circ)=-cancel((2sqrt2)/(2sqrt2)

color(orange)(rArrtan(135^circ)=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(purple)(tan(150^circ)

enter image source here

color(brown)(tan(theta)=( sin(theta))/(cos(theta))

rarrtan(150^circ)=(sin(150^circ))/(cos(150^circ))

rarrtan(150^circ)=(1/2)/(-sqrt(3)/2)

rarrtan(150^circ)=1/2*-2/sqrt(3)

rarrtan(150^circ)=-cancel2/(cancel2sqrt(3))

rarrtan(150^circ)=-1/3

Here is the most important part. The denominator is an irrational number, so multiplu both numerator and denominator by sqrt3

rarrtan(150^circ)=-1/3*(sqrt(3)/sqrt(3))

color(purple)(rArrtan(150^circ)=-(sqrt(3))/3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hope this helps!!! :)