What is the trigonometric form of (-6-i) (6i)?

1 Answer
Mar 8, 2016

sqrt37(cos(0.165) + isin(0.165))37(cos(0.165)+isin(0.165))

Explanation:

Using the following formulae:

• r^2 = x^2 + y^2 r2=x2+y2

• theta = tan^-1(y/x) θ=tan1(yx)

here x = -6 and y = -1

r^2 = (-6)^2+(-1)^2 = 37 rArr r = sqrt37r2=(6)2+(1)2=37r=37

and theta = tan^-1((-1)/(-6)) = tan^-1(1/6) ≈0.165 " radians "θ=tan1(16)=tan1(16)0.165 radians

rArr (-6-i) = sqrt37(cos(0.165) + isin(0.165)) (6i)=37(cos(0.165)+isin(0.165))