What is the trigonometric form of (-6-i) (−6−i)?
1 Answer
Mar 8, 2016
Explanation:
Using the following formulae:
• r^2 = x^2 + y^2 ∙r2=x2+y2
• theta = tan^-1(y/x) ∙θ=tan−1(yx) here x = -6 and y = -1
r^2 = (-6)^2+(-1)^2 = 37 rArr r = sqrt37r2=(−6)2+(−1)2=37⇒r=√37 and
theta = tan^-1((-1)/(-6)) = tan^-1(1/6) ≈0.165 " radians "θ=tan−1(−1−6)=tan−1(16)≈0.165 radians
rArr (-6-i) = sqrt37(cos(0.165) + isin(0.165)) ⇒(−6−i)=√37(cos(0.165)+isin(0.165))