What is the trigonometric form of # (-6-5i) #?

1 Answer
Jun 14, 2018

#color(gray)((-6 - i 5) = (7.81 cos (219.8) + i 7.81 sin (219.8))#

Explanation:

#z = (-6 - i 5)#

Polar form #(r, theta)#

#r = |sqrt((-6)^2 + (-5)^2| = |sqrt61 | = 7.81#

#theta = arctan (-5/-6) = arctan (5/6) = 180 + 39.8^@ = 219.8^@, " III Quadrant"#

Trigonometric form of #z = (rcos theta + i r sin theta)#

#color(gray)((-6 - i 5) = (7.81 cos (219.8) + i 7.81 sin (219.8))#