What is the trigonometric form of # (5+i) #?
1 Answer
Jun 12, 2016
Explanation:
To convert a complex number into trig form.
#color(red)(|bar(ul(color(white)(a/a)color(black)(x+yi=r(costheta+isintheta))color(white)(a/a)|)))#
where r is the magnitude and#theta# the argument.Since( 5 + i) is in the 1st quadrant the the following formulae allow us to calculate r and
#theta#
#•r=sqrt(x^2+y^2#
#•theta=tan^-1(y/x)# here x = 5 and y = 1
#rArrr=sqrt(5^2+1^2)=sqrt26# and
#theta=tan^-1(1/5)=0.197" radians""or11.3^@#
#rArr5+i=sqrt26(cos(0.197)+isin(0.197))#