What is the trigonometric form of # (4-2i) #?
2 Answers
Explanation:
To find the trigonometric form, we have to know
We can use the following formulas:
#r = sqrt(4^2+(-2)^2)#
#r = sqrt(20)#
#r = 2sqrt(5)#
#tan theta = -2/4#
#theta = tan^-1(-2/4)#
#theta = -0.46#
So, the trigonometric form is
Explanation:
#"to convert from "color(blue)"cartesian to trig. form"#
#"that is " (x,y)tor(costheta+isintheta)" use"#
#•color(white)(x)r=sqrt(x^2+y^2)#
#•color(white)(x)theta=tan^-1(y/x)color(white)(x);-pi < theta<=pi#
#"here "x=4" and " y=-2#
#rArrr=sqrt(4^2+(-2)^2)=sqrt20=2sqrt5# 4-2i is in the fourth quadrant so we must ensure that
#theta# is in the fourth quadrant.
#theta=tan^-1(1/2)=0.46larrcolor(red)" related acute angle"#
#rArrtheta=-0.46larrcolor(red)" in fourth quadrant"#
#rArr4-2i=2sqrt5(cos(-0.46)+isin(-0.46))#
#rArr4-2i=2sqrt5(cos(0.46)-isin(0.46))#