Let us first write (2-i) and (1-2i) in trigonometric form.
a+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta),
where r=sqrt(a^2+b^2).
Hence 2-i=sqrt(2^2+(-1)^2)[cosalpha+isinalpha] or
sqrt5e^(ialpha), where cosalpha=2/sqrt5 and sinalpha=-1/sqrt5
1-2i=sqrt(1^2+(-2)^2)[cosbeta+isinbeta] or
sqrt5e^(ibeta], where cosbeta=1/sqrt5 and sinbeta=(-2)/sqrt5
Hence (2-i)*(1-2i)=(sqrt5e^(ialpha))xx(sqrt5e^(ibeta])=5e^(i(alpha+beta))
= 5(cos(alpha+beta)+isin(alpha+beta))
= 5[(cosalphacosbeta-sinalphasinbeta)+i(sinalphacosbeta+cosalphasinbeta)]
= 5[(2/sqrt5xx1/sqrt5-(-1)/sqrt5xx(-2)/sqrt5)+i((-1)/sqrt5xx1/sqrt5+2/sqrt5xx(-2)/sqrt5)]
= 5[(2/5-2/5)+i(-1/5-4/5)] = 5xx-5/5i=-5i