What is the trigonometric form of # (2-25i) #?
1 Answer
Dec 17, 2016
Explanation:
The trigonometric form of a complex number
#z=x+iy# is
#color(red)(bar(ul(|color(white)(2/2)color(black)(z=r(costheta+isintheta))color(white)(2/2)|)))#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(r=sqrt(x^2+y^2))color(white)(2/2)|)))#
#color(red)(bar(ul(|color(white)(2/2)color(black)(theta=tan^-1(y/x))color(white)(2/2)|)))#
where# -pi < theta <= pi# Here
#x=2" and " y=-25#
#rArrr=sqrt(2^2+(-25)^2)=sqrt629# Now 2 - 25i is in the 4th quadrant, so we must ensure that
#theta# is in the 4th quadrant.
#rArrtheta=tan^-1(-25/2)=-1.49larr" in 4th quadrant"#
#rArr2-25i=sqrt629(cos(-1.49)+isin(-1.49))# which can also be expressed as.
#2-25i=sqrt629(cos(1.49)-isin(1.49))#