What is the trigonometric form of # 12+4i #?
2 Answers
Explanation:
where
Hence
=
=
where
and
or
Explanation:
Given a complex number z = x + yi , this can be written in trig. form as.
#z=x+yi=r(costheta+isintheta)# where
#r=sqrt(x^2+y^2)# and
#theta=tan^-1(y/x)# here x = 12 and y = 4
#rArrr=sqrt(12^2+4^2)=sqrt160=4sqrt10# and
#theta=tan^-1(4/12)≈0.322" radians or"18.43^@#
#rArr12+4i=4sqrt10(cos(0.322)+isin(0.322))# or
#12+4i=4sqrt10(cos(18.43)^@+isin(18.43)^@)#