What is the trigonometric form of (1-3i) (13i)?

1 Answer
May 2, 2016

sqrt10(cos(-1.25)+isin(-1.25) )10(cos(1.25)+isin(1.25))

Explanation:

Given a complex number z = x + iy , then in trig.form it is written

z = r(costheta + isintheta)r(cosθ+isinθ)

where |z|=|x+iy|=r=sqrt(x^2+y^2)|z|=|x+iy|=r=x2+y2

and theta=tan^-1(y/x)θ=tan1(yx)

here x = 1 and y = - 3

rArr r=sqrt(1^2+(-3)^2)=sqrt10r=12+(3)2=10

and theta=tan^-1(-3)=-1.25" radians "θ=tan1(3)=1.25 radians

rArr(1-3i)=sqrt10(cos(-1.25)+isin(-1.25))(13i)=10(cos(1.25)+isin(1.25))