What is the trigonometric form of # (1-3i) #?
1 Answer
May 2, 2016
Explanation:
Given a complex number z = x + iy , then in trig.form it is written
z =
#r(costheta + isintheta)# where
#|z|=|x+iy|=r=sqrt(x^2+y^2)# and
#theta=tan^-1(y/x)# here x = 1 and y = - 3
#rArr r=sqrt(1^2+(-3)^2)=sqrt10# and
#theta=tan^-1(-3)=-1.25" radians "#
#rArr(1-3i)=sqrt10(cos(-1.25)+isin(-1.25))#