What is the sum of an infinite geometric series with a first term of 6 and a common ratio of 1/2?
1 Answer
Explanation:
The general term of a geometric series can be represented by the formula:
#a_n = a r^(n-1)#
where
We find:
#(1-r) sum_(n=1)^N ar^(n-1) = sum_(n=1)^N ar^(n-1) - r sum_(n=1)^N ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = sum_(n=1)^N ar^(n-1) - sum_(n=2)^(N+1) ar^(n-1)#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = a + color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) - ar^N#
#color(white)((1-r) sum_(n=1)^N ar^(n-1)) = a(1 - r^N)#
Dividing both ends by
#sum_(n=1)^N ar^(n-1) = (a(1 - r^N))/(1-r)#
If
#sum_(n=1)^oo ar^(n-1) = lim_(N->oo) (a(1 - r^N))/(1-r) = a/(1-r)#
In the given example,
#sum_(n=1)^oo 6*(1/2)^(n-1) = 6/(1-1/2) = 12#