What is the standard form of y= (x-6)(x-4)(x-1)?
1 Answer
Jan 1, 2016
Explanation:
To rewrite the equation in standard form, start by expanding the first two brackets:
y=(color(red)x color(green)(-6))(color(orange)x color(blue)(-4))(x-1)
y=(color(red)x(color(orange)x) color(red)(+x)(color(blue)(-4)) color(orange)(+x)(color(green)(-6)) color(green)(-6)(color(blue)(-4)))(x-1)
Simplify.
y=(x^2-4x-6x+24)(x-1)
y=(x^2-10x+24)(x-1)
Expand the remaining two brackets:
y=(color(red)(x^2) color(orange)(-10x) color(blue)(+24))(color(green)x color(purple)(-1))
y=color(red)(x^2)(color(green)x) color(red)(+x^2)(color(purple)(-1)) color(orange)(-10x)(color(green)x) color(orange)(-10x)(color(purple)(-1)) color(blue)(+24)(color(green)x) color(blue)(+24)(color(purple)(-1))
Simplify.
y=x^3-x^2-10x^2+10x+24x-24
y=x^3-11x^2+34x-24