What is the standard form of y=(x+4)(2x-3) -3x^2?

1 Answer
Dec 5, 2015

The standard form is y=-x^2+5x-12.

Explanation:

y=(x+4)(2x-3)-3x^2

The standard form for a quadratic equation is ax^2+bx+c, where a, b, and c are coefficients.

First Foil the two binomials.

![http://hubpages.com/education/Using-the-FOIL-Method-to-Expand-Products](useruploads.socratic.org)

(x+4)(2x-3)

a=x, b=4, c=2x, d=-3

(x+4)(2x-3)=ac+ad+bc+bd

(x+4)(2x-3)=(x*2x)+(x*-3)+(4*2x)+(4*-3)

(x+4)(2x-3)=(2x^2)+(-3x)+(8x)+(-12)

Combine like terms.

(x+4)(2x-3)=2x^2+5x-12

Return to original equation, keeping the foiled results.

y=2x^2+5x-12-3x^2

Combine like terms.

y=2x^2-3x^2+5x-12

y=-x^2+5x-12