What is the standard form of y= (3x-7)(x-14)(x-11)?
1 Answer
Feb 6, 2016
3x^3 - 82x^2 + 637x - 1078
Explanation:
Require to distribute the brackets. Starting with the 1st pair and using FOIL.
(3x - 7 )(x - 14 ) = 3x^2 - 42x - 7x + 98 'collecting like terms' gives:
3x^2 - 49x +98 This now requires to be multiplied by ( x - 11 )
(3x^2 - 49x +98 )(x - 11 )
each term in the 2nd bracket requires to be multiplied by each term in the 1st bracket. This is achieved by the following :
3x^2(x-11) - 49x(x-11) +98(x-11)
= 3x^3 - 33x^2 - 49x^2 +539x + 98x - 1078 writing in standard form means starting with the term with the largest exponent of x and then terms with decreasing terms of exponents.
rArr 3x^3 -82x^2 + 637x -1078