What is the standard form of a polynomial #(5k + 2)(3k + 1)#?
1 Answer
Explanation:
Recall that the standard form of a polynomial is written in the form:
#color(teal)(|bar(ul(color(white)(a/a)ax^2+bx+c=0color(white)(a/a)|)))color(white)(X),color(white)(X)# where#a!=0#
For simplifying a quadratic equation into standard form, the F.O.I.L. (first, outside, inside, last) method is often used to expand the brackets. Here is what you will need to know before we start:
#(color(red)(5k)# #color(blue)(+2))(color(orange)(3k)# #color(green)(+1))=0#
#color(red)(5k)(color(orange)(3k))#
#=color(purple)(15k^2)#
#color(purple)(15k^2)# #color(red)(+5k)(color(green)1)#
#=color(purple)(15k^2)# #color(purple)(+5k)#
#color(purple)(15k^2)# #color(purple)(+5k)# #color(blue)(+2)(color(orange)(3k))#
#=color(purple)(15k^2)# #color(purple)(+5k)# #color(purple)(+6k)#
#color(purple)(15k^2)# #color(purple)(+5k)# #color(purple)(+6k)# #color(blue)(+2)color(green)((1))#
#=color(purple)(15k^2)# #color(purple)(+5k)# #color(purple)(+6k)# #color(purple)(+2)#
#color(green)(|bar(ul(color(white)(a/a)15k^2+11k+2=0color(white)(a/a)|)))#