What is the range of the function h(x) = ln(x+6)?

1 Answer
Nov 16, 2017

Answer: Using Monotony/continuity & Domain: h(Dh)=R

Explanation:

h(x) = ln(x+6) , x>-6

Dh=(-6,+oo)

h'(x)=1/(x+6)(x+6)'=1/(x+6) >0, x> -6
So that means that h is strictly increasing ↑ in (-6,+oo)

h is obviously continuous in (-6,+oo) as composition of h_1(x)=x+6 & h_2(x) = lnx

h(Dh)=h((-6,+oo))= (lim_(xrarr-6)h(x),lim_(xrarr+oo)h(x)) =(-oo,+oo)=R

because lim_(xrarr-6)h(x)= lim_(xrarr-6)ln(x+6)

x+6=y
xrarr-6
yrarr0

= lim_(yrarr0)lny =-oo

lim_(xrarr+oo)h(x)=lim_(xrarr+oo)ln(x+6)=+oo

Note: you can also show this using the reverse h^-1 function. (y=ln(x+6)=>......)